Chapter 7 - Electric Potential

Main Points

- An electric potential field measures the amount of potential energy (U) per unit charge available at all points in the region of a field-producing charge. It can be associated with any charge configuration, and one exists wherever there is charge/an electric field. They are measures in volts (joules/coulomb).
- Electric potential fields generate a conservative force on particles. Conservation of energy principles can be applied to solve electric potential problems.
- An equipotential line is a line upon which every point has the same electrical potential. They are always perpendicular to electric field lines.
- It takes no energy to move one point charge around, but as soon as a second point charge is introduced, it takes $\mathrm{W}=-\mathrm{qV}$ to move the second point charge. Bringing in a third point charge requires work that combats eletric potential fields from the first and second charges.
- Because we can integrate the e-field to find V , we can take the derivative of V to find the e-field. This may require use of the del operator.
- Behavior with conductors
- free charge on a conductor will distribute itself to create an equipotential surface (same voltage at every point on the surface)
- the electric field inside a conductor $=0$ so the electric potential field is constant
- An electric dipole is a system of two equal but opposite charges a fixed distance apart. An electric dipole moment $p=q d$ occurs when the distance of the point P from the dipole is greater than the distance between charges in the dipole. d points from the negative charge to the positive charge.

Equations

$$
\begin{aligned}
& \text { electric } \\
& \text { potential } \\
& \text { field } \\
& \omega=-\Delta U \\
& \left.-\Delta V=\int_{0}^{r} \frac{E}{\text { enfield }} \cdot d r\right] \text { distance between two points } \\
& \text { or }=E d \text {, when the enfield is constant. }
\end{aligned}
$$

Practice Problems

1. (easy) Draw equipotential lines on the following image of an electric field surrounding two positive point charges.

2. (medium) An electric field does 18 J of work on a charged particle, moving it from a potential of 4 V to 6 V . What is the charge of the particle?
3. (hard) An electron is to be accelerated in a uniform electric field having a strength of 2.00 x $10^{\wedge} 6 \mathrm{~V} / \mathrm{m}$. (a) What energy in keV is given to the electron if it is accelerated through 0.400 m ?
(b) Over what distance would it have to be accelerated to increase its energy by 50.0 GeV ?

Solutions
1.

$$
\Delta V=\frac{\Delta U}{q} \text { so } q=\frac{\Delta U}{\Delta V}=\frac{U_{f}-U_{1}}{V_{f}-U_{1}}=\frac{-18}{6-4}=-9 C
$$

3. a) $\Delta K=q \Delta V$ and $\Delta V=E d$ so $\Delta K=q E d$

$$
\begin{aligned}
\Delta K & =(1)\left(2.00 * 10^{6} \mathrm{~V} / \mathrm{m}\right)(0.4) \\
& =800 \mathrm{KeV}
\end{aligned}
$$

b)

$$
\begin{aligned}
& 50 \mathrm{GeV}=5 * 10^{10} \mathrm{eV}=\Delta \mathrm{K} \\
& \Delta \mathrm{~K}=q E \mathrm{Ed} \\
& 5 * 10^{10}=(1)\left(2 * 10^{6}\right)(\mathrm{d}) \\
& d=25,000 \mathrm{~m}=25 \mathrm{~km}
\end{aligned}
$$

